Programme: S.Y.B.Sc.I.T. (Sem-III) Course: Applied Mathematics

UNIT-I: Matrices & Complex Number

Matrices:

- o Inverse of a matrix,
- o Properties of matrices,
- o Elementary Transformation,
- Rank of Matrix,
- Echelon or Normal Matrix,
- Linear equations,
- Linear dependence and linear independence of vectors,
- Linear transformation,
- Characteristics roots and characteristics vectors,
- o Properties of characteristic vectors,
- o Caley Hamilton Theorem,
- o Similarity of matrices,
- o Reduction of matrix to a diagonal matrix which has elements as characteristics values.

• Complex Numbers:

- o Complex number,
- o Equality of complex numbers,
- o Graphical representation of complex number (Argand's Diagram),
- o Polar form of complex numbers, P
- polar form of x+iy for different signs of x, y,
- Exponential form of complex numbers,
- Mathematical operation with complex numbers and their representation on Argand's Diagram,
 Circular functions of complex angles,
- o Definition of hyperbolic function,
- o Relations between circular and hyperbolic functions,
- o Inverse hyperbolic functions,
- Differentiation and Integration,
- o Graphs of the hyperbolic functions,
- Logarithms of complex quality,
- j(=i)as an operator(Electrical circuits)

Programme: S.Y.B.Sc.I.T. (Sem-III) Course: Applied Mathematics

UNIT-II

Equation of the first order and of the first degree:

- Separation of variables,
- Equations homogeneous in x and y,
- Non-homogeneous linear equations,
- o Exact differential Equation,
- Integrating Factor,
- Linear Equation and equation reducible to this form,
- Method of substitution.
- Differential equation of the first order of a degree higher than the first: Introduction,
- Solvable for p (or the method of factors),
- o Solve for y, Solve for x, Clairaut's form of the equation,
- Methods of Substitution,
- Method of Substitution.

• Linear Differential Equations with Constant Coefficients:

- o Introduction,
- o The Differential Operator,
- Linear Differential Equation f(D) y = 0,
- \circ Different cases depending on the nature of the root of the equation f(D) = 0,
- Linear differential equation f(D) y = X,
- The complimentary Function,
- \circ The inverse operator 1/f(D) and the symbolic expiration for the particular integral 1/f(D) X;
- The general methods, Particular integral: Short methods,

Particular integral:

- Other methods,
- o Differential equations reducible to the linear differential equations with constant coefficients.

UNIT-III

• The Laplace Transform:

- Introduction,
- o Definition of the Laplace Transform,
- o Table of Elementary Laplace Transforms,
- o Theorems on Important Properties of Laplace Transformation,
- First Shifting Theorem,
- Second Shifting Theorem,
- The Convolution Theorem,

- Laplace Transform of an Integral,
- Laplace Transform of Derivatives,

• Inverse Laplace Transform:

- Shifting Theorem,
- o Partial fraction Methods,
- Use of Convolution Theorem,
- o Solution of Ordinary Linear Differential Equations with Constant Coefficients,

Course: Applied Mathematics

- o Solution of Simultaneous Ordinary Differential Equations,
- o Laplace Transformation of Special Function,
- o Periodic Functions,
- Heaviside Unit Step Function,
- Dirac-delta Function (Unit Impulse Function),

UNIT-IV

• Multiple Integrals:

- o Double Integral,
- o Change of the order of the integration,
- o Double integral in polar co-ordinates,
- Triple integrals.

Applications of integration:

- o Areas,
- o Volumes of solids.

UNIT-V

• Beta and Gamma Functions:

- o Definitions,
- o Properties and Problems.
- **Duplication formula**.
- <u>Differentiation Under the Integral Sign Error Functions</u>